Documentation for "The Killer Date Class!" Version 5.00

�TOC \o�History	� GOTOBUTTON _Toc311717542 � PAGEREF _Toc311717542 �1��

Implementation Notes	� GOTOBUTTON _Toc311717543 � PAGEREF _Toc311717543 �2��

Archive Contents	� GOTOBUTTON _Toc311717544 � PAGEREF _Toc311717544 �2��

DATE50.ZIP	� GOTOBUTTON _Toc311717545 � PAGEREF _Toc311717545 �2��

DATEAX.ZIP	� GOTOBUTTON _Toc311717546 � PAGEREF _Toc311717546 �3��

Release Notes:	� GOTOBUTTON _Toc311717547 � PAGEREF _Toc311717547 �3��

v5.0 - JMC - 10/ 1/93	� GOTOBUTTON _Toc311717548 � PAGEREF _Toc311717548 �3��

v4.9 - TML - 01/26/94	� GOTOBUTTON _Toc311717549 � PAGEREF _Toc311717549 �5��

v4.8 - TML - 11/18/93	� GOTOBUTTON _Toc311717550 � PAGEREF _Toc311717550 �5��

v4.7 - TML - 09/20/93	� GOTOBUTTON _Toc311717551 � PAGEREF _Toc311717551 �5��

v4.6 - TML - 08/04/93	� GOTOBUTTON _Toc311717552 � PAGEREF _Toc311717552 �6��

v4.5 - TML - 06/21/93	� GOTOBUTTON _Toc311717553 � PAGEREF _Toc311717553 �6��

v4.4 - TML - 06/03/93	� GOTOBUTTON _Toc311717554 � PAGEREF _Toc311717554 �6��

v4.3 - TML - 3/24/93	� GOTOBUTTON _Toc311717555 � PAGEREF _Toc311717555 �6��

v4.2 - TML - 3/13/93	� GOTOBUTTON _Toc311717556 � PAGEREF _Toc311717556 �6��

v4.1 - KAA - 3/7/93	� GOTOBUTTON _Toc311717557 � PAGEREF _Toc311717557 �8��

v4.0 - CP - 6/27/92	� GOTOBUTTON _Toc311717558 � PAGEREF _Toc311717558 �8��

v3.1 - ES & CH - 8/5/91	� GOTOBUTTON _Toc311717559 � PAGEREF _Toc311717559 �10��

A Word about the Calendar & this Date Class	� GOTOBUTTON _Toc311717560 � PAGEREF _Toc311717560 �11��

Future possibilities for enhancement, Part I	� GOTOBUTTON _Toc311717561 � PAGEREF _Toc311717561 �11��

Future possibilities for enhancement, Part II	� GOTOBUTTON _Toc311717562 � PAGEREF _Toc311717562 �11��

Porting Notes	� GOTOBUTTON _Toc311717563 � PAGEREF _Toc311717563 �12��

Restrictions & Copyrights	� GOTOBUTTON _Toc311717564 � PAGEREF _Toc311717564 �12��

��
History

In the beginning, Steve Marcus (CIS 72007,1233) posted a basic date manipulation/arithmetic class produced with Borland C++ 2.0 in the BPROGB forum, with a request for suggestions and enhancements. This was on 6/19/91.

A rather enterprising gentleman by the name of Eric Simon (CIS 70540,1522) accepted the challenge, and produced a new and improved version in the course of a project he was developing at work. He contributed the results to the forum on 6/29/91, also inviting enhancements and comments.

About that time yet another enterprising gentleman named Christopher Hill developed a need for a universal date conversion routine for use in a business project he was developing as well. Browsing the same forum, he encountered Eric's class, which provided much of the functionality he needed - the basic julian-gregorian and day of week conversion algorithms - relieving him of the task of researching or re-inventing them. Eric had also added overloaded + and - operators for incrementing date objects by integer days, as well as several print functions. Chris needed additional features for his implementations, thus was born versions 3.0 and 3.1(Hill & Simon).

Well, almost a year later I sent out an SOS for a date class so I didn't have to re-invent the wheel and lo-and-behold Chris responded. Thus begins the saga of version 4.0! I would like to take this opportunity to do a little witnessing: I looked all over for a date class that would suit my needs! I reviewed many implementations from strangers and friends alike and I am here to tell ya' folks, "It don't 'git no bedder 'n dis!" This class is VERY cool! Now I'm not trying to say that there's no more room for enhancements (I'd really be crazy then!), but I am saying that if your looking for a GOOD date class (I'd say commercial quality because I have yet to see a commercial product that implemented a date class to my satisfaction!) then this is it! So jump in and add to it, make it better and we'll SAVE THE WORLD! (Ok, so I got a little carried away at the end. Just a little...)

No, but really... This is a truly pleasing example of co-operation among professionals, and an "object" study in the code reusability of OOP, resulting in three releases of one class within a single month by three different analysts who have never met, and yet another upgrade almost a year later by a fourth analyst (myself) and none of us have yet to meet! Chris thanks Steve and Eric for their inspiration and generosity, and I thank all three as well.

I believe any of us would welcome further comments, suggestions and enhancements as well.

Good luck! May the quest for the perfect date class continue!

					Charles Price

				*	*	*	*

Well, I must say, this is quite an impressive Date class!!! And I must agree with Mr. Kenneth...it's probably one of the BEST (if not the best) Date class I've seen so far (but then again, I've not seen too many!).

However, I thought it really could take more advantage of some of the better features of C++ (ie. encapsulation!). Thus, I decided to take on the challenge set forth by the aforementioned 'Date'-crazed group.

My changes are listed below in the Version 4.2 section. Please let me know of any updates/changes that will happen in the future!

And of course, we all welcome any comments/suggestions/participations!!!

				Trí Minh Ly :)

				*	*	*	*

To continue where Charles & Trí leave off, the class sat idle for about 8 months, when suddenly in March of '93, three people, still all working independently, decided, almost simultaneously, to add their own modifications. Kenneth Argo got the ball rolling again, and then Trí Minh Ly kept it active with regular updates. During this time, I was toiling away, spending about two years, off & on, ripping out and replacing it's guts, while try to keep up with Trí's updates.

					James M. Curran

				*	*	*	*

v5.0�
James M. Curran�
72261,355�
10/30/94�
�
v4.9�
Clyde Ford�
71426,72�
�
�
v4.8�
Trí Minh Ly�
73062,512�
�
�
v4.7�
Trí Minh Ly�
73062,512�
09/20/93�
�
v4.6�
Trí Minh Ly�
73062,512�
08/04/93�
�
v4.5�
Trí Minh Ly�
73062,512�
06/21/93�
�
v4.4�
Trí Minh Ly�
73062,512�
06/03/93�
�
v4.3�
Trí Minh Ly�
73062,512�
03/24/93�
�
v4.2�
Trí Minh Ly�
73062,512�
03/13/93�
�
v4.1�
Kenneth A. Argo�
71241,3635�
03/07/93�
�
v4.0�
Charles Price�
70541,3651�
06/27/92�
�
v3.1�
Hill & Simon�
�
08/05/91�
�
v3.0�
Christopher Hill�
72030,2606�
07/11/91�
�
v2.0�
Eric Simon�
70540,1522�
06/29/91�
�
v1.0�
Steve Marcus�
72007,1233�
06/16/91�
�

Implementation Notes

	All versions prior to 4.0 were written specifically for a Borland C++ compiler. However, version 4.0 was written specifically for Microsoft C++ 7.0, and version 5.0 should work with either of those, and (hopefully) several others. We have attempted to optimize the code by including the specification of "const" where applicable, the passing of references where advisable, and the use of constructor initializers where needed. However, no exhaustive analysis of this subject has been made.

	To get the best overview of the class capabilities run the demo program. It may not look pretty, but with a printout of a sample run and the code you should be able to get a really good feel for it. The complete class specification is given in the accompanying file, DATE_MAN

Archive Contents

DATE50.ZIP

 The main archive file contains:

DATECL.MAK�
make file to compiling class library for MSC 7.0/ MSVC++�
�
DATEDEMO.MAK�
make file to compile & link the demo for MSC 7.0/ MSVC++�
�
DATECL.PRJ�
project file for compiling class library under Borland C++ 3.1�
�
DATEDEMO.PRJ�
project file for compiling demo under Borland C++ 3.1 �
�
DATECL50.TXT�
This file, in straight ASCII text.�
�
DATE_MAN.TXT�
Class reference manual.�
�
DATECL.H�
the header file �
�
DATECL.CPP�
the member functions �
�
DATEDEMO.CPP �
a test program (and a messy one at that!) �
�
DATECL.LIB�
a lib file so you can use it even if you don't have MSC7.0, or you just don't feel like fussin' with it! �
�

DATEAX.ZIP

The Auxillary Package (a separate archive) contains these optional files:

DATECL50.DOC�
This file, in Word for Windows format. If you have WinWord, use this file instead of the ASCII version. It's formatted properly.�
�
DATE_MAN.DOC�
The Class Reference Manual, also in WinWord format.�
�
CLSS_DOC.DOT�
WinWord template used to create the above files.�
�
DATE_MAN.CPP�
All the examples given in DATE_MAN. Should just print today's date. Will assert if something goes awry.�
�
BABY.CPP�
A simple command-line app that uses the Date class. (Written for my Brother, the Obstetrician, to calculate due dates.)�
�

Release Notes:

v5.0 - JMC - 10/ 1/93

�SYMBOL 183 \f "Symbol" \s 12 \h�	Made Class compatible MSC7/VC++ & BC 3.1, using the compilers' internal, predefined symbols, thus removing the need to manually define _MSC or _BCC.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Attempted to made compatible with Zortech C++. I have compiled it as best I could using the version of Zortech C++ that was provided with Tom Swan's book "Learning C++" (© 1991). This is basically a striped-down rendering of version 2.1, with some rather significant limitations, notably, a very small maximum file size. It aborts with an "out of memory" error midway through DATECL.CPP, DATEDEMO.CPP, and DATE_MAN.CPP. Only BABY.CPP (in the separate auxiliary files archive) compiles completely. The others experience no other errors up to the point where they run out of memory. Any field reports from people with the full package will be greatly appreciated. (see also the Porting Notes section, below)

�SYMBOL 183 \f "Symbol" \s 12 \h�	Have removed or isolated all MS-DOS specific code. It should now compile (with only slighted reduced functionality) with any C++ based on ANSI C. (Mainly, I get the current date using the ANSI C time()/struct TM method, instead of _dos_getime()).

�SYMBOL 183 \f "Symbol" \s 12 \h�	Changed Julian_to_mdy() & mdy_to_julian() to remove floating point. This change, by itself, will reduce the EXE size of a program which uses this class, but otherwise doesn't use floating point, by about 15K. They're also faster this way.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Converted data members, that were previously changed from ints to chars, back into shorts. This was a false economy. Since ints are, by definition, the natural data size for the hardware, what little we save in data (here, 2 bytes) space we lose in code space, as the compiler generates extra instructions to convert the values into ints for processing, then back into chars for storage. By my calculation, we'd have to have a minimum of 30 date object active at one time just to break even in the memory required, plus using chars adds an (admittedly, probably imperceptible) speed lose in processing.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Removed the graphic line characters from the source code files. They looked nice under DOS, but really offended Borland's & Microsoft's Windows IDEs. (And who knows what effect they'd have an a UNIX terminal?)

�SYMBOL 183 \f "Symbol" \s 12 \h�	Fixed two bad bugs in the AddMonths() function. First, it assumed that if the date wrapped to the next (or previous) year, it would be by only one month. A more subtle bug was that it assumed that it would only wrap by one year. eg: Date Indep(7,4,1776); Indep.AddMonths(2400); cout << Indep; would output "1/4/1777" instead of "7/4/1976" (Really, I DID do this before Trí did it in version 4.6; It just took me a while to release this <g>)

�SYMBOL 183 \f "Symbol" \s 12 \h�	The default year when setting a date from a string is now the current year. ie. previously Date date = "3/15"; would be "March 15, 0 B.C.E.". It now uses the current year. Similarly, when a two-digit year is use, it is assumed to be in this century. ie, previously Date date = "3/15/93"; would be presumed to be in the first century. It's now assumed to be in 1993. This can be changed with the setCentury function. If, for some bizarre reason, you actually want to refer to dates in the first century AD, use "setCentury(0);". This will return the class to it's previous behavior.

�SYMBOL 183 \f "Symbol" \s 12 \h�	The date from string function now just LOOKS at the string passed to it, so neither modifies the passed string, nor requires a temporary copy of the string.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Centralized common strings. This saves some space and should make internationalization rather simple. I've started this by adding the days, months and error messages for Spanish and German. Compile the class with _ESPANOL or _DEUTSCHEN defined. (NOTE: I'm strictly mono-lingual and have gotten this information from foreign language dictionaries. Any corrections from those who actually speak these languages would be greatly appreciated, as would the words for other languages. Also, I've used the standard English letters for the foreign word, instead of the "more appropriate" letters with accents and umlauts, since there is no standard ASCII values for those characters, and I'm trying to make this compatible to compilers outside the MSDOS world)

�SYMBOL 183 \f "Symbol" \s 12 \h�	Numerous minor changes to "tighten" the library up a bit. I've made some trivial functions "inline"; in particular, the arithmetic and comparison operators. The only change that may break existing code using earlier version of this class is that type cast operator has been changed from "operator char *" to "operator const char *" since this better reflects the value actually returned. Even under previous versions, attempting to modify the string returned would probably not have the desired effect. Now, this restriction is merely enforced by the compiler.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Added "COLLATE" format ("YYYYMMDD") to generate a sortable key. This can be stored in databases and other places where it will be accessed by straight C programs, or otherwise be unable to use the class comparison operators.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Added enums for the months & days of the week.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Added a new constructor which creates a date based on a certain weekday in a certain week of a month & year. eg. Date(3, MONDAY, MARCH, 1993); builds the Date object for the 3rd Monday of March, 1993. If the first parameter is Zero, the last date of that day for the month is used (ie Date(0, MONDAY, MARCH, 1993) is the last Monday in March).

�SYMBOL 183 \f "Symbol" \s 12 \h�	Added a new Set() function to go with the above new constructor.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Added functions for a host of holidays.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Added an output manipulator. The format style can now be changed by using '<<' to "output" one of the format_type enums to an ostream, eg cout << Date::EUROPEAN << date1 << endl;

�SYMBOL 183 \f "Symbol" \s 12 \h�	Will initialize a simple period (ie Date d4 = ".";) to today's date. (I did this because I needed to get a date string from the command line)

�SYMBOL 183 \f "Symbol" \s 12 \h�	Returned the ++ and -- operators to their pre-4.5 condition. (They were correct in the first place.) In case you haven't been paying attention, the saga of the auto-incremetors goes as such: Some time prior to v3.0, the prefix incrementers were added to the class. In v4.0, the postfix operators were added, but with functionality identical to the prefix operators. In v4.1, the postfix operators were corrected to work in the manner expected of postfix operators. In v4.5, the functionality of the prefix & postfix operators was reversed, in attempts to fix a nonexistent bug. They've now been restored. I pointed this out to Trí, who decided I was taking too long get v5.0 out the door, and so fixed them in v4.7. I've double checked them, and given my rabbit's foot a healthy rub, so I really think we can put this matter to rest now....

�SYMBOL 183 \f "Symbol" \s 12 \h�	Wrote proper class description reference manual (in the separate document DATE_MAN). Apologies to Microsoft's technical writers who's style for their "Microsoft C/C++ Class Library Reference" I've rather blatantly stole. I revised much of this file, so that it's a bit better organized, and with less redundancy, plus made it clear when the word "I" is used, which of the class's seven authors is speaking (or at least "I" tried) . The reference manual was created in, and this document converted into, Microsoft Word format for editing, and then convert back to simple text for distribution. The Word files are available, and if you have access to MS Word, that is the best way to deal with this documentation. A Windows WinHelp version of both these documents combined will be forthcoming (eventually, but remember, I sat on this library for about a year before releasing it, so don’t hold your breath).

Since the ANSI/ISO C++ committee working papers currently propose a new intrinsic data type, “boolean”, this has been simulated with an boolean enum, and all member functions which formerly return “1 for TRUE, and 0 for FALSE”, now return “true” and “false” as defined in this enum. When the standard is complete, and compilers recognize these new keywords, this enum can be removed.

v4.9 - TML - 01/26/94

Version 4.9 fixes the Date::AddMonths() member function. The problem was it did not adjust the day value after the new month’s value have been calculated. For example, if the current date is ‘08/31/1993’ and 6 months is added to it using Date::AddMonths(), then the result is: 02/31/1994. Date::AddMonths() will now set the day value as appropriate for the new month. If the day value is greater than the # of days in that month, then it will roll the month over to the next month and set the day value to the difference between the day value and the # of days in the that month. Thanks to Patrick Cunningham this bug.�

This version also expands the Date::isDST() functionality by adding two new member functions: Date::setDST() and Date::setSTD(). Date::setDST() sets the month and day on which DST date begins. Likewise, Date::setSTD() sets the month and day on which STD date begins. Thanks to Marcelos Cantos for this suggestion.

*********************** WARNING TO BORLAND C++ USERS *********************

A couple of people have kindly informed me that the class Date is a pre-defined class in Borland C++. Thus, you will have to rename this class to another name like xDate, or DateCL or whatever is appropriate for your implementation!!!

v4.8 - TML - 11/18/93

Version 4.8 adds a new member function Date::isDST() which was contributed by Clyde Ford (CIS 71426,72). Date::isDST() determines if the current date object is “within daylight savings time as defined in the United States”. If so, then it will return true, otherwise false is returned.

v4.7 - TML - 09/20/93

�SYMBOL 183 \f "Symbol" \s 12 \h�	Version 4.7 un-fixes the serious bug in the code for unary operators ++/--. In other words, they were originally correct. I guess I got really confused when I last talked to Jorge.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Thanks to James M. Curran for informing me of this change. Also, James has a new version of DateClass (5.0) currently in the works. I think all of us will be very impress and receptive of his version!!!

v4.6 - TML - 08/04/93

�SYMBOL 183 \f "Symbol" \s 12 \h�	Fixes the Date::AddMonths() member function. It does not add or subtract the number of months correctly. Thanks to Patrick Cunningham for finding this bug!

v4.5 - TML - 06/21/93

�SYMBOL 183 \f "Symbol" \s 12 \h�	Fixes a very serious bug in the code for unary operators ++/--. I confused myself with the formats for prefix and postfix operations. (I got them reversed.) Jorge Padron was kind enough to inform me of my mistake.

�SYMBOL 183 \f "Symbol" \s 12 \h�	I also removed the 'const' keyword from parameter statements for functions which require variables to be passed by values (as opposed to pass by reference.) For example,

			Date operator + (const long i);

is changed to:

			Date operator + (long i);

I did it in the first place because I was trying to be consistent, but I realize that this can be confusing (especially those that are just learning C++). Jorge also pointed this out to me.

v4.4 - TML - 06/03/93

�SYMBOL 183 \f "Symbol" \s 12 \h�	Adds a little validation to the value of the day and month when an object is created via a string argument. For example, month must be from (1..12) and day must be from (1..n) where 'n' is the number of days for the given month.

Thus, the following statements:

		Date myDate("02/31/1993");

		cout << myDate.formatDate() << "\n";

will result in an "invalid date" output!

v4.3 - TML - 3/24/93

�SYMBOL 183 \f "Symbol" \s 12 \h�	Add more flexibility in the constructor to support the many string formats that are used by the Date class.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Fixed Date::Date(char *) and made it accept the string as a 'const' argument. Also, made a copy of the string ('dat') before passing it to strtok() since this function modifies its argument!

�SYMBOL 183 \f "Symbol" \s 12 \h�	Removed the smaller buffer ('buf') and make use of only one buffer to save memory.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Re-coded the type cast operator to call formatDate() so the current format and options will be applied to the resulting string.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Changed year to 'int' type to support B.C.E. dates.

v4.2 - TML - 3/13/93

�SYMBOL 183 \f "Symbol" \s 12 \h�	Made it compatible to both Borland C++ (v 3.1) and Microsoft C++ (v 7.0) via #define switches. Define _BCC for Borland and _MSC for Microsoft. See the GO.BAT batch file!

�SYMBOL 183 \f "Symbol" \s 12 \h�	Fix memory problems in Version 4.1. There were three 'deadly' memory threats introduced by Version 4.1:

(a) In the destructor function, it is erroneous to delete buf without referring to it as a vector of characters. The proper method would be:

			delete [] buf; // Must have the brackets!

	Please review the section "The Free Store and Class Arrays" on page 95-99 of the _C++ Tutorial_ from Microsoft's C++ package!

(b) In the Date::operator char *() function, variable buf was allocated space every time the function was called. This causes memory leaks when the same Date instance calls this operator function more than once during its lifetime.

(c) Also in the Date::operator char *() function, variable buf was assigned the address of the constant string BadDate without prior release of the memory for buf.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Fix implementation of the prefix/postfix operators to properly reflect the before/after syntax of the unary incrementor. (C++ provides only the facility to determine which type of operator is being used, but the implementation is left to the programmer!)

�SYMBOL 183 \f "Symbol" \s 12 \h�	Moved all buffer variables to the class level and made them private static member data. for the Date::formatDate() function, the buffer is renamed to 'cbuf' for the Date::Operator () function, the buffer is named 'buf'

�SYMBOL 183 \f "Symbol" \s 12 \h�	Move all publicly declared variables/enums into the public portion of the class. Also redefine the #define constants to an enum type. By doing this, we are taking advantage of C++'s encapsulation feature and reduce pollution of the global variable names. This concept is based on the ios class. (ie. ios::hex, ios::dec, etc.)

�SYMBOL 183 \f "Symbol" \s 12 \h�	Also redeclare the 'friend' functions to be member functions (again, making use of encapsulation!)

�SYMBOL 183 \f "Symbol" \s 12 \h�	Rewrote the Date::setOption() function. (Made it more compact!)

�SYMBOL 183 \f "Symbol" \s 12 \h�	Made use of the 'const' feature of C++ to ensure the references returned by most of the member functions will be non-modifiable by the calling program. (ie. force them to make a copy of it if they want to modify it!)

�SYMBOL 183 \f "Symbol" \s 12 \h�	In the function Date::formatDate(), for the case Date::EUROPEAN and Date::EUROPEAN, fix the code (day_of_week < 0) to (day_of_week < 1). Also removed the statement strcat(cbuf, " ") and put the space into the sprintf() statement:

sprintf(cbuf+strlen(cbuf), " %d", abs(year));

�SYMBOL 183 \f "Symbol" \s 12 \h�	Modified the following functions to return a Date object instead of a reference to a Date object!

Date operator + (const long i);

Date operator + (const int i);

Date operator - (const long i);

Date operator - (const int i);

Date operator ++ ();

Date operator ++ (int);

Date operator -- ();

Date operator -- (int);

This is important because in Version 4.0 and before, the binary operators (+ and -) were declared to return references to Date objects since these functions dynamically creates a Date object when the function is called. However, there were no provisions for deleting these objects once they leave the scope of the function.

In Version 4.1, Mr. Kenneth got rid of this problem of allocation by forcing the compiler to generate code to allocate stack space to return the objects. However, Mr. Kenneth 'forget?' to remove the references declaration. Why would this cause problem? Because when the calling program is expecting a reference in return (as opposed to a copy of the object), then that reference will be invalid since after the function terminates, the temporary object (used to return the value to the calling program) will also be terminated. Thus, the reference to the object is rendered obsolete.

	To test this, I wrote the following program:

#include "datecls4.h"

#include "iostream.h"

void showDate(Date &dt)

{

	cout << dt;	// The (char *) type cast operator is in

}			// effect here!

void main()

{

	Date z("04/13/1967");

	showDate(z+3);

}

	RESULT:

	*** destructor called ***		// Temporary object is destroyed

	237/7/21

	*** destructor called ***		// Object 'z' is destroyed

As dictated by the result, the temporary object (created by the + operator) is destroyed before its values are displayed.

By declaring the functions to return an actual Date object instead of a reference, we force the compiler to make a copy of it and return it to the calling program!

v4.1 - KAA - 3/7/93

�SYMBOL 183 \f "Symbol" \s 12 \h�	Fixed date display when using the * operator to get a string pointer. The code would return xx/xx/ xx if you only supplied a 2 digit year.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Optimized the * operator so Invalid Dates would use a common "invalid date" text pointer.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Fixed the +, - and * operators to get rid cases where memory leaks would occur.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Fixed some variable casts so the code can be compiled with /W4

�SYMBOL 183 \f "Symbol" \s 12 \h�	Added a destructor to delete items created dynamically on behalf of the object (ie. char *).

v4.0 - CP - 6/27/92

�SYMBOL 183 \f "Symbol" \s 12 \h�	Most of the modifications made to version 3.1 were to expand the public interface.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Date &Set() - Sets self to current system date; this may also be accomplished by passing initializing a date object like so:	Date oDate1("Today"); // See demo for examples

�SYMBOL 183 \f "Symbol" \s 12 \h�	Date &Set(long lJulian) - Sets self to the specified julian date

�SYMBOL 183 \f "Symbol" \s 12 \h�	Date &Set(int nMonth, int nDay, int nYear) - Sets self to specified month, day, and year. The year must be 4 numbers long, not 2.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Date &AddWeeks(int nCount = 1) - Add or subtract(use a negative int) a specified number of weeks to/from self.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Date &AddMonths(int nCount = 1) - Add or subtract(use a negative int) a specified number of months to/from self.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Date &AddYears(int nCount = 1); - Add or subtract(use a negative int) a specified number of years to/from self.

�SYMBOL 183 \f "Symbol" \s 12 \h�	int Day() const - Returns numeric day of the month for self

�SYMBOL 183 \f "Symbol" \s 12 \h�	int DaysInMonth() - Returns number of days in month (1..31)

�SYMBOL 183 \f "Symbol" \s 12 \h�	int FirstDOM() const - Returns the First Day Of Month for self as a numeric (1..7)

�SYMBOL 183 \f "Symbol" \s 12 \h�	char *CDOW() - Returns character Day Of Week ('Sunday'..'Saturday')

�SYMBOL 183 \f "Symbol" \s 12 \h�	int NDOW() const - Returns the numeric day of the week for self(1..7)

�SYMBOL 183 \f "Symbol" \s 12 \h�	int WOM() - Returns numeric Week Of Month (1..6)

�SYMBOL 183 \f "Symbol" \s 12 \h�	int WOY() - Returns numeric Week Of Year (1..52)

�SYMBOL 183 \f "Symbol" \s 12 \h�	char *CMonth() - Character Month name ("January")

�SYMBOL 183 \f "Symbol" \s 12 \h�	int NMonth() const - Month Number (1..12)

�SYMBOL 183 \f "Symbol" \s 12 \h�	Date BOM() - Returns a new date object that is the First Date Of the Month in self. For example:

Date 	Date1;

Date 	Date2("Today");

Date1 = Date2.BOM();

�SYMBOL 183 \f "Symbol" \s 12 \h�	Date EOM() - Returns a new date object that is the Last Date Of the Month in self. (See example in BOM() above)

�SYMBOL 183 \f "Symbol" \s 12 \h�	int NYear4() const - Returns the numeric value of the year for self in the form 1992.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Date BOY() - Returns a new date object that is the First Date Of the Year in self. (See example BOM() above)

�SYMBOL 183 \f "Symbol" \s 12 \h�	Date EOY() - Returns a new date object that is the Last Date Of the Year in self. (See example BOM() above)

�SYMBOL 183 \f "Symbol" \s 12 \h�	Added overloaded operators for + and - to accept int's.

�SYMBOL 183 \f "Symbol" \s 12 \h�	Added overloaded operators for ++ and -- for Postfix notation

�SYMBOL 183 \f "Symbol" \s 12 \h�	Switched from the Borland style DOS date structure(date) to the Microsoft version(_dosdate_t).

v3.1 - ES & CH - 8/5/91

Subsequent to release 3.00, we (Hill & Simon) decided to collaborate on several further releases of this date class. This, the first, contains two new features, as well as a few minor bug fixes.

�SYMBOL 183 \f "Symbol" \s 12 \h�	There was a minor bug in the original Computer Language julian/gregorian date conversion routines having to do with negative years.

�SYMBOL 183 \f "Symbol" \s 12 \h�	The isLeapYear function did not take into account that, prior to 1582, years ending in 00 were also leap years.

�SYMBOL 183 \f "Symbol" \s 12 \h�	The two-dimensional array of the number of days in each month has been eliminated in favor of a computational approach.

�SYMBOL 183 \f "Symbol" \s 12 \h�	The function Date::setFormat(XXXX) maintains a static variable (one occurrence for all Date objects, which controls the format which the << operator uses to print objects. "XXXX" can be MONTH, MDY, DAY, FULL, or EUROPEAN. The setting defaults to MDY, but once altered, remains altered until reset by another call to setFormat.

�SYMBOL 183 \f "Symbol" \s 12 \h�	The function Date::setOption(Option, Action) maintains a similar static variable which enables certain print formatting options. Available options at this point are:

NO_CENTURY�
Suppress the printing of the century when in the MDY format (ex: 01/01/91 instead of 01/01/1991).�
�
DATE_ABBR�
Abbreviate month and day names when printing in the MONTH, DAY, FULL or EUROPEAN formats. (ex. MON, TUE, JAN, FEB, etc.) The length or the abbreviation is controlled by a DEFINED constant in DATECL31.HPP named ABBR_LENGTH, preset to 3.�
�

�SYMBOL 183 \f "Symbol" \s 12 \h�	"Action" is either ON or OFF, and defaults to ON. (Example, the call Date::setOption(NO_CENTURY) turns on the century suppression option, and it remains set until the call Date::setOption(NO_CENTURY, OFF) is made.

�
A Word about the Calendar & this Date Class

	(Deep Thoughts, by James Curran)

	As you know, the world changed from the Julian calendar, which had a leap year every 4 years, to the Gregorian calendar, which skipped leap years ever now & then, on Oct 4th, 1582, and in the process skipped 10 days. This date class goes to great pains to takes into consideration those 10 days, so that if you wished to calculate the number of days in Shakespeare's life, (Born April 23, 1564; died April 23, 1616), the class will dutifully report back 18983, instead of 18993. And it will tell you that 29-Feb-1200, is a perfectly good date, while 29-Feb-1600 is invalid.

	The problem with all this is that it's completely pointless. Shakespeare really did live 18993 days -- when Pope Gregory commanded the change in the calendar, only the Catholic world followed along. The English-speaking world had just gone to a great deal of trouble to prove that they didn't have to listen to the Pope, and kept their old calendar. They didn't get around to switching until September 2, 1752, by which time, having had a leap year in 1700 when no one else did, they were now 11 days out of sorts.

	Furthermore, trying to pinpoint a date such "29-Feb-1200" is quite foolish. Throughout the world at that time, there were various different local calendars. Since the only real purpose for a calendar back then was to plan out the planting & the harvest, many just had nine months, with a big gap for "Winter".

	So, if we admitted to ourselves that any value we assign to a date before 1752 has a rather tenuous connection to reality (at least in respect to it's relationship to any other date), we can simplify much of the mdy_to_julian & julian_to_mdy calculations. We could just assume that the Gregorian calendar was always in effect, and be done with it. It would tell us that there was no February 29th in 1200, but then there's no evidence that there was any principality that celebrated a date called "February 29th" in 1200. This would also make Date(1L) be sometime in late December 2714BC, instead of January 1st, 2713BC, with all the dates between then and 1582AD differing a bit between the new calculation & the old style, but is that really going to affect anyone?

Future possibilities for enhancement, Part I

�SYMBOL 183 \f "Symbol" \s 12 \h�	Adding a derived Time class, for those applications which require the ability to track more than just dates. This would allow the manipulation of times for all dates (not just since 1980), and arithmetic calculations as well.

�SYMBOL 183 \f "Symbol" \s 12 \h�	More features, including further expanded print formatting features, the derived Time class mentioned above, conversion into various calendar formats (Jewish, Chinese, Arabic, etc.), ability to increment Date objects by years and months instead of merely days, holiday computations, and more are planned.

				* 	*	*

Future possibilities for enhancement, Part II

	By James M. Curran

As far as I can tell, the above enhancement list was written by Hill & Simon, for version 3.1. And as you can see, they never quite got around to any of them. However, some progress was made by others. Specifically, the expanded print formatting, incrementing by years & months, and holiday computations have made their way into the class. And I've rumors that Trí Minh Ly is working on a derived Time class. This leaves just conversions into other calendar formats from the original list.

However, there are now new frontiers to cross, and for some the wagon trains are already loaded up, and ready to go. Things such as:

�SYMBOL 183 \f "Symbol" \s 10 \h�	Compiler support - The class works with MSC & Borland, but there's till Symantec, Watcom and others. Plus Macs, Amigas, and of course Unix. (See Porting Notes, below)

�SYMBOL 183 \f "Symbol" \s 10 \h�	Foreign Langauge Support - I've tried to add German, Spanish and French, but there are hundreds of other languages out there which could use a date class.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Windows Support - Again, I've laid the groundwork (see the comments in the source code about GetString() & GetStringArray().

�SYMBOL 183 \f "Symbol" \s 10 \h�	Holidays - I've just did a few that were easy to inline. Others, including those specific to certain coutries should be added.

Porting Notes

	By James M. Curran

�SYMBOL 183 \f "Symbol" \s 10 \h�	This package has gone from Borland specific, to Microsoft specific, to a Borland/Microsoft combination, to it's present form, which I hope should be portable to all C++ compilers on all operating systems. However, (there's always an however), testing this on compilers other than Borland & Microsoft can best be described "superficial". If you attempt to move it to any other compiler or OpSys, I would greatly appreciate any reports from the field. Just email me the whole modified source code, and I'll do my best to incorporate the changes into the next release.

�SYMBOL 183 \f "Symbol" \s 10 \h�	Some things you know to guide you through your porting mission:

�SYMBOL 183 \f "Symbol" \s 10 \h�	To keep the actual source code as uncluttered as possible, as few #if's as I could get away with were used in the body of the code. However, this forces us to have a forest of them as the top of both DATECL.H and DATECL.CPP. There are just a few standard #define for each compiler. Set these correctly, and the rest of the code should work as is.

#define �
Notes�
�
MSDOS�
Defined for compiler where the target OpSys is MSDOS, undefined elsewhere. If undefined, simply removes sections specific to MSDOS. Often this is already defined by the compiler. (defined in DATECL.H)�
�
DOSDATE_T�
Gives the name of the struct that is defined as such:

struct dosdate_t {

 unsigned char day; 	/* 1-31 */

 unsigned char month; /* 1-12 */

 unsigned int year; /* 1980-2099 */

 unsigned char dayofweek; /* 0-6, 0=Sunday */

 };

Only used when "MSDOS" is #defined. (defined in DATECL.H)�
�
NOPOSTFIX�
Defined for compilers which do not differentiate between prefix & postfix operators. There "shouldn't" be any anymore, but ...

(defined in DATECL.H)�
�
strnset

stricmp	

strnicmp	�
These are fairly common, but non-ANSI, string functions. Most compilers have them under these names. If so, no problem -- No need to #define anything. Others, such as Microsoft, have them under slightly different names-- Simply #define them to the alternate name. Still others don't have direct replacements -- a close substitute must be #defined. See the ones in the source code already. (Defined in DATECL.CPP)�
�
Restrictions & Copyrights

	This class, and some of it's associated files (DATECL.CPP, DATE.H, DATEDEMO.CPP, DATECL50.DOC) are the combined works of at least seven different people, all working individually, who are making them publicly available. You may (and, in fact, are encouraged to) add your own modifications to the Class, provided the results are then also made openly available. You may use this class in any program, both those for personal use and retail packages. However, you may NOT sell the source code as part of a retail class library.

	The Class Manual (DATE_MAN.DOC), and the other files in the class auxiliary package (DATE_MAN.CPP, BABY.CPP etc., released in a separate archive file) are copyright © 1993, by James M. Curran, but are being made freely available, subject to the same use restrictions as described in the previous paragraph.

	This package may be freely distributed by any BBS, Shareware vendor, or other service which may find it of interest. However, we'd prefer if both parts of this package are made available together, so that the end user can decide whether he wants the full package or just the required files. (In other words, if you've only downloaded DATECL.ZIP from CompuServe, and want to upload it to your favorite BBS, first go back to CIS and download DATEAX.ZIP, and then upload both files)

�PAGE�

�PAGE�3�

